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Abstract

As currently planned, future Earth remote sensing platforms (i.e., Earth Observing System
[EOS]) will be capable of generating data at a rate of over fifty Megabits per second. To address

this issue the Intelligent Data Management (IDM) project at NASA/GSFC has prototyped an

Intelligent Information Fusion System (IIFS) that uses backpropagation neural networks for the

classification of remotely sensed imagery. This is part of the IDM strategy of providing archived

data to a researcher through a variety of discipline-specific indices.

In this paper we discuss classification accuracies of a backpropagation neural network and

compare it with a maximum likelihood classifier (MLC) with multivariate normal class models.
We have found that, because of its nonparametric nature, the neural network outperforms the

MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on

parallel hardware like the MasPar MP-1 currently at NASA/GSFC. Other important discussions

are centered around training and classification times of the two methods, and sensitivity to the
training data. Finally we discuss future work in the area of classification and neural nets.

1 Introduction

With the expected explosive growth of data generated by Earth orbiting platforms such as the Earth

Observing System (EOS), it is imperative that the data be rapidly axchived and made syllable to

the researcher through a variety of discipline-specific indices. To address this issue, the Intelligent

Data Management (IDM) project at NASA/GSFC has prototyped an Intelligent Information Fusion

System (IIFS) that classifies satellite data from a number of spectra_ bands into a number of land

use/land cover categories [Anderson 76] and provides rapid access to the classified data as well as

the raw data. The choice of land use/land cover categories is part of a larger plan to classify images

based on a scientist's specific research interests.
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Management of the EOS data can be considered as two overlapping problems: characteriza-

tion of the data content and subsequent archiving of images; and efficient querying of the resulting

voluminous database. The first problem can be solved independently of the choice of database

technology, and is elaborated upon in this paper.

In this paper we discuss the use of neural nets for the classification of remotely sensed

imagery. In particular we compare backpropagation neural nets (BPNN) with a Gaussian maximum

likelihood classifier (GMLC). Some of the items we compare include training time, classification

time, accuracy of classification, and sensitivity of classification accuracy to the training set. This

study will thus help researchers decide on what classification method to apply, given the constraints
of their problem.

The body of the paper is divided into three sections. First, we briefly discuss the algorithms

for the neural net and the MLC methods. Next, we compare and contrast the two methods.
Finally, we discuss selection criteria for each of the two methods and conclude with our future

research directions.

2 Neural net and maximum likelihood classification algorithms

In this section we discuss the basic algorithms for training and classification for the neural net (NN)

and Gaussian maximum likelihood classifiers (GMLC). For more details on both topics, refer to

[Andrews 72] and [Hertz 91].

2.1 Maximum likelihood classification

The job of designing the pattern classifier consists of first dividing the feature space into decision

regions and then constructing a classifier so that it will identify any measurement vector X as

belonging to the class corresponding to the decision region in which it falls.

The maximum likelihood decision rule allows us to construct discriminant functions for the

purposes of pattern classification [Andrews 72]. Given K classes, let f(X I Sk) be the probability

density function (pdf) associated with the measurement vector X, given that X is from class k.

Let P(Sk) be the a priori probability of class k. We can use the maximum likelihood decision

rule to identify the class to which X belongs. It can be stated as follows:

Decide X C Sk iff f(X l Sk)P(Sk) >_ f(X I Sj)P(Sj),j = 1,2, ... K.

The products f(X I Sk)P(Sk), where k = 1,2, ...K correspond to discriminant functions gl(X),

g2(X),..-gK(X). Thus these functions are evaluated at X = Xi where Xi is the unknown vector;

next, the maximum of these functions gk(Xi) is determined and the unknown vector is assigned to
the class k.

The discriminant function for the multivariate normal density can be written as

gk(X) = ln[P(Sk)]- _ lnl_k I - _(X- Uk) T _-' (X- Uk). (1)



In the above equation, both _k (the variance-covariance matrix) and Uk (mean vector) are provided

by the user. In practice, training samples are used to obtain estimates of _k and Uk. Also from

equation (1) we see that once the training statistics are generated, only the quadratic kernel varies

with each input vector X. Such a classifier is called a Gaussian Maximum Likelihood Classifier

(GMLC) and is used in our classification experiments. It is a parametric supervised technique for

estimation of a posteriori probabilities.

2.2 Backpropagation

The backpropagation algorithm is the backbone of much of the current resurgence of research into

neural nets [Hertz 91]. With respect to pattern recognition, backpropagation can be considered to

be a nonparametric technique for estimation of a posteriori probabilities [Wan 90].

The backpropxgation network consists of a series of layers: an input layer, an output layer
and one or more hidden layers. Each layer has a number of nodes or processing elements (PE). Each

node in a layer is connected to every node in the next layer and the propagation of information is

unidirectionai. Also, in our simulations, connections are only permitted between nodes belonging

to adjacent layers. Each connection has a value associated with it called its weight, and each PE
has a value associated with it called a threshold value.

To find the output of any node we first sum the products of the output of all the nodes before

it with the weights associated with each connection. Next we subtract the threshold value of the

node from this sum, and finally we pass this vaiue through an activation function that determines

the output of the current node. The activation function used in this study is the sigmoid function

defined as 1 (2)
f(h) - 1 + exp -kh

where h = _ wi_i - O, wi are the weights, _i are the inputs to the current node (or output of nodes

in the previous layer), and 0 is the threshold value in the the current PE.

The training phase of backpropagation gives a method of changing the weights in a network

such that it learns a series of input/output pairs (_,ff_) where _ is the k th input for the #th

pattern, and _ is the correct output for the i th output unit for the #th pattern. The basis for the

weight change is gradient descent, thus the weights w_k are changed by an amount Aw_k that is
proportional to the derivative error function E with respect to the weights, where W_k is the weight

that lies on a connection between the jth PE of one layer with the k th PE of the previous layer,

and r indicates the number of the current layer. The most commonly used error function is the

quadratic error function [Hertz 91] defined as

1
E = - (3)

Here, the summation is over all training samples, and O_ is the network output for a given input

pattern for which the expected output is ff_'.

Training proceeds by randomly selecting the weights in the net, passing the input pattern
r OE

through the network, getting the resulting output, obtaining Awik = -r/_, and finally updating



Table1: Distributionof data, Blackhills and DC data sets

Class # of Pixels Blackhills

Training
0 453

1 478

2 464

3 482

4 0

5 0

6 368

7 0

8 0

Entire image

6676

42432

16727

194868

0

0

1441

0

0

# of

Training

73

74

75

75

0

0

74

0

0

Pixels DC

Entire image

2668

776

3733

13826

0

0

936

0

0

Class name

Urban

Agricultural

Rangeland
Forested Land

Water bodies

Wetland

Barren

Tundra

Perennial snow and ice

T

the weights by using w_k,new = wjk,old + Aw_k. Training is done either for a maximum number of
iterations or until the error E goes below a pre-defined threshold level. At this point the trained

network can be used on data in feed-forward mode for the purposes of classification.

3 Experimental Method

In this section we describe the data that we used to compare our neural net (NN) classifier and

Gaussian Maximum Likelihood classifier (GMLC). In addition we discuss the selection process

that we employed for the training and testing data. Finally, we describe the training and testing

methodology used.

3.1 Description of data set

Two data sets were used for the purpose of comparing the the GMLC and the NN approach.

The first is the Blackhills data set, taken from the Landsat 2 multispectral scanner (MSS) (see

Figure 1). The spectral bands are 0.5 - 0.6#m (green), 0.6 - 0.7/zm (red), 0.7 - 0.8#m (near-

infrared) and 0.8 - 1.1#m (near-infrared). These bands correspond to channels 4 through 7 of

the Landsat sensors. There are 262,144 pixels corresponding to a 512 x 512 image size, and each

pixel represents 79m x 79m on the ground. The image region covers a range of latitudes from

44°15 ' to 44030 ' and longitudes from 103°30 ' to 103°45'; the images were obtained in September

1973. The ground truth was also provided in the form of United States Geological Survey level

II land use/land cover data [Anderson 76]. Since we were only interested in level I classification,

the different classes were conglomerated into the various higher level classes in the hierarchy; the

distribution of pixels is shown in column three of Table 1.

The second data set has been used previously in [Campbell 89], which, to our knowledge, was

the first open-literature publication of the use of the backpropagation network to do classification

of remotely sensed imagery. In contrast to that publication, we will only be using the USGS level

I land use/land cover scheme for classification. The first four spectral bands from a LANDSAT-4
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 iiiiiiiiiYi 0 Urban
1 Agric.

2 Range

3 Forest

6 Barren

Figure 1: Ground truth for the Blackhills image

thematic mapper (TM) image were used, and the corresponding spectral bands were 0.45 - 0.52#m,

0.52 - 0.60#m, 0.60 - 0.69_m and 0.76 - 0.90#m respectively. There are a total of 22,801 pixels

in a 151 × 151 grid, and each pixel is representative of a 30m × 30m area on the ground. Only

21,939 pixels of valid ground truth were available, and these are tabulated in column five of Table 1.

Figure 2 shows a gray-level thematic map, with the various classes labeled. The area covered is

about 25 miles SSE of Washington, DC, and is called the DC data set.

3.2 Selection of training and test data

The most important point to note is that identical data were presented to the NN and GML

classifiers for training and testing. The ground truth was viewed on a display device to get an

idea of the spatial distribution of the ground truth pixels. According to [Richards 86], a minimum

sample size of 60 pixels is necessary for accurate classification. Also, according to [Campbell 87], a

large number of smaller training sites should be used rather than a few large ones. Following these

recommendations, we formed training sets from both the TM (DC data set) and MSS (Blackhills

data set) scenes. The results are summarized in columns two and four of Table 1.

3.3 Training and testing

The training set and the test set are disjoint. The classifiers were derived from the training group
and the error estimate obtained from the test group. This method is known as the "holdout" or H

method of estimating errors. The training data itself consists of a series of sites from each class in

the image. For the GMLC we can compute the mean vectors and covariance matrices for each site

separately and combine them to form the class mean vectors and covariance matrices. For the NN
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2 Range

3 Forest

6 Barren

m - Unknown

Figure 2: Ground truth for the DC image

approach, the site information is not important. However, the channel information, which is an

integer in the range [0 255], is scaled to [0.1 0.9] for training. The training of the NN is achieved

by repeatedly presenting the data to the net and performing the backpropagation algorithm as

described in section 2.2. Training in the NN is completed when either the error as described in

equation (3) goes below a threshold level, or a maximum number of iterations of the BP algorithm

is reached. It is important to avoid overtraining the net as it would classify the training data

perfectly but would not perform as well on the testing data.

An alternative method for training and testing data is recommended in [Weiss 89] and is

called leaving-one-out. The principle is very simple and involves taking n- 1 points from the

sample and training the classifier on that information. The n th point is then classified and this

training and testing procedure is repeated for all n points in the set. Quite clearly, for our data it

is entirely infeasible to use the leaving-one-out process since we will have to design n = 262,144

and n = 22,801 classifiers for the Blackhills and DC data sets respectively. However, with large

sample sizes (which is the case for our data) the accuracy in estimating error is adequate by the H

method [Kanal 68], hence our selection of that procedure.

The training of the NN proceeds on the basis that it is a function optimization procedure.

Remembering that the function optimization process is sensitive to initial conditions, we:

1. randomize the initial selection of weights and thresholds;

2. randomize the order of the training data.
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Theeffectof this is to produce different neural nets for each set of initial conditions. Thus, when

we compare the NN and GMLC accuracies, we will be referring to the average correctly classified

by the NN, while there will be only one value for the GMLC. Training of these multiple neural nets

can be achieved on the MasPar MP-1, with each processing element generating an independent
NN. The best net is one that obtains the lowest error on the test set, and it is selected for general

use.

4 Comparing backpropagation (BP) with Gaussian maximum

likelihood classification (GMLC)

In this section we compare BP with GMLC under different sets of categories. These categories

include time for training, time for classification, memory requirements, and classification accuracy.

Instead of exact calculations, we give order-of-magnitude estimates for these quantities. It is

important to note that we assume that our neural net is restricted to one hidden layer, because

according to Kohnogorov's theorem [Hecht-Nielsen 90], a three layer neural net can be constructed

that performs any continuous mapping with (2N + 1) PE's in the hidden layer, where N is the

number of elements in the input layer. Another assumption is that the output layer has m nodes

where m is proportional to N. Note that N is also the dimension of the unknown vector whose

class we are trying to determine. This notation will be used in the subsequent subsections.

4.1 Training time

Training time in the neural net can be shown to be O(N 6) based on arguments in [Muhlenbein 90].

The training phase of GMLC has a worst case complexity of O(N3).

While it seems quite clear the training time for the GMLC is significantly less, the current,

off-the-shelf availability of hardware to do backpropagation training reduces the advantage of

the GMLC. Since BP is a far more general process, hardware will continue to be supported and

developed for it, whereas since the GMLC is a specific method of classification, it is uneconomical to

develop custom hardware for this process. In addition, we have only discussed a simple BP scheme.

In fact there exist a number of speed-up procedures [Hertz 91], that would make BP competitive

with GMLC in software implementations.

Also, while the GMLC is suited for similar types of data (in our case spectral information),

it is unsuited for multi-source data, since the underlying distribution may change when one adds

(say) elevation data [Benediktsson 90]. The NN handles these problems in an effective manner. In

addition, our application permits the training to be performed off-fine, thus eliminating the time

factor entirely.

4.2 Classification time

Both the NN and GMLC method can be shown to take constant time for the classification of one

pixel. Again, the availability of hardware makes the NN method more attractive. In addition, even

in software, the time needed for neural network computations can be considerably decreased by

using integer calculations for the sigmoid function [Birmingham 91]. In this paper, a Taylor series
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Figure 3: Maximum likehhood classified DC image

approximation to the sigmoid with only integer fractions is used. It was found that an almost

six-fold speed-up factor can be obtained. Another advantage of the NN is that the same hardware

can be used for training and feedforward classification, which is not the case for the GMLC.

4.3 Accuracy

The accuracy of each method can be summarized by the contingency table, which is an R × R

matrix of numbers, where R is the number of classes. Each entry Cij in the matrix represents the
number of times a pixel in class i was put into class j. Cii is the number of correct classifications
in class i.

For the DC data set we have two sets of contingency tables. In Table 2, we present the GMLC

accuracy results for the training and test data respectively. In Table 3, typical accuracy results for

the NN are presented. In addition, Table 4 presents the average percent correctly classified (PCC),

the maximum PCC, and the minimum PCC for all the nets that were trained. We see that even

the minimum PCC for the NN exceeds the PCC value obtained by GMLC. The number of nets

trained to get these readings was six. For the purposes of visual comparison, the classified images

are shown in Figures 3 and 4.

We have two sets of contingency tables for the BlackhiUs data set. In Table 5, we present

the GMLC accuracy results for the training and test data, respectively. In Table 6, typical accuracy

results for the NN are presented. In addition, Table 7 presents the average PCC, the maximum

PCC, the minimum PCC as well as the standard deviation of the PCC for all the nets that were

144



Groups
:+:+:+: :

::::iiiiiiiiiiiii_0 Urban

1 Agric.

2 Range

3 Forest

6 Barren

i- Unknown

Figure 4: Neural net classified DC image

Table 2: Contingency table for GMLC, DC training data on left (PCC : 0.827), DC test data on

right (PCC = 0.623)

0 68 0 5 0

1 2 56 12 4

2 6 5 64 0 0

3 0 0 1 72 2

6 0 27 0 0 47

0 1 2 3 6 0 1 2 3 6

0 1843

0 30

605

1661

46

219 505 16 12

380 158 14 120

1132 1472 220 229

715 1634 0408 333

380 100 3 333

Table 3: Contingency table for NN, DC training data on left (PCC = 0.871), DC test data on right

(PCC = 0.677)

0 68 0 5 0

1 1 47 15 0

2 2 1 72 0 0

3 0 0 0 75 0

6 0 13 0 0 61

0 1 2 3 6 0 1 2 3 6

0 1714

11 15

440

1144

33

94 751 26 10

195 243 21 228

404 2054 322 438

133 1952 10227 295

251 170 4 4O4
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Table 4: Statistics for NN performance on DC test data set

# I Av. Max. Min. Std. dev. I
6 I 0.675 0.688 0.665 0.093

Groups

 iiiiiiiiiii }0 Unban
1 Agric.

2 Range

3 Forest

6 Barren

Figure 5: Maximum likelihood classified Blackhills image

trained. We see that even the minimum PCC for the NN exceeds the PCC value obtained by

GMLC. To compare the classified images visually, refer to Figures 5 and 6.

It is important to note that the contingency table can be used as an aid to further improving

classification accuracy. This is called the conditional probabilities matrix (CPM) technique and

is described in detail in [Cromp 91]. Using this technique, a distance measure representing the

error was reduced by approximately 50%. Of course, the method applies to the contingency tables

produced by both the NN and GMLC.

4.4 Memory requirements

Both the NN and the GMLC can be shown to require O(N _) memory elements.
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Figure 6: Neural net classified Blackhills image

Table 5: Contingency table for GMLC, Blackhills training data on left (PCC = 0.571); Blackhills

test data on right (PCC = 0.653)

0 1 2 3 6 0 1 2 3 6

0 236 72 91 18 36

1 26 316 135 0 1

2 16 119 279 43 7

3 1 4 77 385 15

6 61 28 78 136 65

2425 731 1307 876 884

6631 16140 15741 1463 1979

1840 3450 9333 1165 475
4077 8761 25804 141644 14100

157 116 147 442 211
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Table 6: Contingency table for NN, Blackhills training data on left (PCC = 0.578); Blackhills test

data on right (PCC = 0.727)

0 274 74 86 16

1 26 323 124 5

2 21 115 284 44

3 5 4 91 381

6 87 31 75 139

0 1 2 3 6 0 1 2 3 6

3 3021

0 7689

0 2134

1 2183

36 228

709 1413 892 188

16700 15285 1998 282

3610 9360 1128 31

11572 20749 159832 50

125 155 473 92

Table 7: Statistics for NN performance on Hills test data set

# Av. Max. Min. Std. dev. I

6 ] 0.736 0.754 0.706 0.019 I

5 Concluding remarks and future work

In this research we have compared the backpropagation neural network (BPNN) with Gaussian

maximum likelihood classification (GMLC). The accuracy level of BPNN (i.e., the number of cor-

rectly classified pixels in a test set) is better than the accuracy obtainable by GMLC. This is

because the BPNN makes no a priori assumptions about the underlying densities of the data. The

memory requirements and classification time were shown to be equivalent for both methods. Fi-

nally, the time for training was discussed. In this case, the GMLC takes less time than the BPNN;

however, this is not considered to be a disadvantage because: the training can be performed off-line

in our application; special purpose BPNN hardware exists for training and testing; and a variety

of speed-up techniques are available for BP in software. From these results we feel that the BPNN

is a better candidate for doing supervised characterization of remotely sensed data.

Recently, a new type of neural network called the probabilistic neural network (PNN) has

been developed [Specht 90]. It uses the technique of Parzen windows for nonparametric density

estimation and uses the technique of maximum likelihood estimation for classification. It offers

the twin advantages of being available in hardware [Washburne 91] as well as being considerably

quicker to train than BP. We will investigate the application of such classifiers to our problem.

In addition we will research the use of ancillary data such as texture and spatial information to

improve our classification accuracy.

We have mentioned the MasPar MP-1 as a parallel computer alternative in previous sections.

It will be the focus of IDM to implement parallel code for the BPNN as well as the GMLC, thus

providing fast alternatives to the remote sensing researcher.
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